
Bo Xing and I describe the
general knowledge of the foraging behavior of our FOA below.
1. Introduction
If you have been seeing small flies in your kitchen, they’re probably fruit flies. In fact, the fruit flies can be viewed as the second smallest member among the model animals in the narrow sense which has only hundreds of neurons and has no brain. During the summer, they are attracted to ripened or fermenting food through their sensing and perception characteristics, especially in osphresis and vision. Inspired by the behavior of real fruit flies, recently Pan (2012) proposed a new algorithm called fruit flies optimization algorithm (FFOA).
2. Fruit Fly Optimization Algorithm
The Fruit Fly Optimization Algorithm is an evolution algorithm for maximizing global optimization based on the food searching behavior of the fruit fly swarm. Fruit flies have better senses and perceptions than other species, particularly its olfactory and visual senses. The individual fruit fly samples the differing scents that are present in its surroundings, and then uses its sensitive vision to fly in the general direction of the target. It transmits information to the rest of the swarm and direct the ‘flocking location' of the swarm closer to the location of the food. Through ‘iterative evolution,” the fly swarm comes closer and closer to the food source, until the target is reached (See Figure 1). The fly's direction and distance of the original Pan's paper was based on two dimensions. However, in our article we extend his fly's search area more flexible and quantify the smell concentration of the food/target.
Fig. 1 Illustration of the group iterative food
search of fruit flies
Step1: Generate initial fruit fly swarm location.
Init X_axis; Init Y_axis ; Init Z_axis
% p1=initial location
parameter (default=20)
% X_axis=
X_axis(p1)
% Y_axis=
Y_axis(p1)
% Z_axis=
Z_axis(p1)
X_axis=p1*(rand()-0.5);
Y_axis=p1*(rand()-0.5);
Z_axis=p1*(rand()-0.5);
Step 2: Calculate search
direction, distance and smell concentration value of the fruit fly.
% p2= step parameter (default=2)
% X(i)= X(p1,p2);
% Y(i)= Y(p1,p2);
% Z(i)= Z(p1,p2);
% where i denotes the individual fly.
X(i)=X_axis+
p2*(rand()-0.5);
Y(i)=Y_axis+
p2 (rand()-0.5);
Z(i)=Z_axis+
p2 (rand()-0.5);
The distance (D) of the food is
defined from the origin and depends on parameters p1 and p2, due to the
location of the food with respect to the fly swarm is unknown.
% p3=random
interference parameter (2)
% D1=D1(p1,p2);
% D2=D2(p1,p2);
D(i,2)=(X(i)^2+Y(i)^2+Z(i)^2)^0.5;
The food’s
smell concentration values (olfactory S or x) are calculated, which is mainly
defined as the reciprocal of distance (D), and perturbed by a small fraction
(gp) of it:
% gp1=gp1(p3);
% gp2=gp1(p3);
gp1=p3*(rand()-0.5);
gp2=p3*(rand()-0.5);
Therefore, the variables (S1,S2) depend on three
parameters (p1.p2, p3):
% S1(i)= S1(gp1,
D1) = x1(i) (p1,p2,p3);
% S2(i)= S2(gp2, D2) = x2(i) (p1,p2,p3);
S1(i)=1/D(i,1)-gp1*D(i,1);
S2(i)=1/D(i,2)-gp2*D(i,2);
Substitute the smell
concentration value S(i) into a Smell judgment function (a.k.a. objective
function f(S)= Smell(i)), i.e. a function of D or S, (g(D) or f(S)), where D=(D(1),D(2)). Here we let S=( S1, S2) = (x1, x2) = x.
% for example: two variables
% Smell(i)=
g(D(i,1),D(i,2))=f(S1(i),S2(i)) =f(x1(i),x2(i)).
% as an example: the quadratic
function of two variables
Smell(i)=
=f(x1(i),x2(i))=(x1(i)+3)^2+(x2(i)+3)^2;
Step 3: Find the highest smell judgment value among the fruit flies.
[bestSmell bestindex]=min(Smell)
Keep the highest smelling concentration value and the best
3-D location (X_axis, Y_axis , Z_axis), and at this moment, all other fruit flies use their visions to fly towards that location. In other words,
the fruit fly smelling the
highest concentration and would like to share its best location with all other flies.
X_axis=X(bestindex);
Y_axis=Y(bestindex);
Z_axis=Z(bestindex);
Smellbest=bestSmell;
Step 4: Update smell judgment value. If the maximal value or maximum number of iterations (maxgen) is reached, the processes are stopped. Otherwise, return
to Step 5.
Step 5: Update the
best location (X_axis, Y_axis, Z_axis) and return to Step 2.
The complete flowchart of FOA is shown in Figure 2.
Fig. 2 Flowchart of the fruit fly optimization algorithm
3. Conclusions
Nowadays, a number of algorithmic approaches based on the animals’ foraging behavior were developed and applied to variety of combinatorial optimization problems. Among others, FFOA is a new member. Two characteristics of fruit flies (osphresis and vision) are the building blocks of FFOA. The main advantages of FFOA include simple computational process, ease understanding, and easy
Interested readers please refer to our blog www.flyfoa.com as a starting point for a further exploration and exploitation of FFOA.
1. Wei-Yuan
Lin (2012), “3D-Novel Fruit Fly Optimization Algorithm and Its Applications in Economics”,
working paper, Economics Department, Soochow University, Taiwan.
2. Bo
Xing and Wen-Jing Gao (2013),” Innovative Computational Intelligence: A Rough
Guide to 134 Clever Algorithms”, Intelligent Systems Reference Library 62, DOI:
10.1007/978-3-319-03404-1_11, Springer, International Publishing Switzerland.
3. Nien
Benjamin (2011) Application of data mining and fruit fly optimization algorithm
to construct financial crisis early warning model – A case study of listed
companies in Taiwan, Master Thesis, Department of Economics, Soochow
University, Taiwan (in chinese), Adviser: Wei-Yuan Lin.
Jing Si Aphorism:
To give is better than to receive.
https://saglamproxy.com
ReplyDeletemetin2 proxy
proxy satın al
knight online proxy
mobil proxy satın al
O820
Balıkesir
ReplyDeleteBursa
Mersin
Konya
Van
APİKA
adıyaman
ReplyDeletesakarya
yalova
tekirdağ
amasya
EİWDYG
van
ReplyDeleteerzincan
sivas
ağrı
manisa
LXYD
maraş evden eve nakliyat
ReplyDeletemalatya evden eve nakliyat
ağrı evden eve nakliyat
elazığ evden eve nakliyat
aydın evden eve nakliyat
PWF
E0AD1
ReplyDeleteUşak Evden Eve Nakliyat
Adıyaman Evden Eve Nakliyat
Antalya Lojistik
Ordu Lojistik
Tekirdağ Parça Eşya Taşıma
1DDE3
ReplyDeletedeca durabolin
order steroid cycles
order trenbolone enanthate
for sale dianabol methandienone
testosterone propionat
buy parabolan
fat burner for sale
order testosterone propionat
buy pharmacy steroids
C0254
ReplyDeletemuğla bedava sohbet siteleri
karaman mobil sohbet et
burdur sesli görüntülü sohbet
trabzon rastgele sohbet odaları
aydın chat sohbet
ücretsiz sohbet siteleri
uşak rastgele sohbet
ordu mobil sohbet
malatya parasız sohbet
1908F
ReplyDeleteBitcoin Nasıl Alınır
Paribu Borsası Güvenilir mi
Parasız Görüntülü Sohbet
Bitcoin Kazanma
Twitter Takipçi Hilesi
Coin Kazanma
Coin Çıkarma Siteleri
Onlyfans Beğeni Hilesi
Görüntülü Sohbet
D7316
ReplyDeletebitcoin giriş
kraken
bingx
bybit
bitexen
coin nasıl alınır
sohbet canlı
poloniex
bitrue
BF9F2
ReplyDeletejeneratör fiyatları
anime önerileri
güneş paneli fiyatları
istanbul iç mimar
güneş enerjisi fiyatları
vds
sunucu
telegram kanal satın al
seo nedir
F6FFF
ReplyDeleteAndroid Uygulama Yapma
pvp
netflix film önerileri
anime önerileri
Sosyal Medya İşleri
İnternetten Para Kazanma
ipv4 Proxy
Oyun Forumu
Twitter SEO
E0E8E
ReplyDeleteoffshore hosting
Google Yorum Satın Al
Site Satışı
silkroad pvp serverler
bitcoin yorum
bitcoin forum
Tiktok Beğeni Satın Al
Youtube Kanal Satın Al
Fiziksel Sunucu Kiralama
B408F
ReplyDeletegörüntülü şov whatsapp
CB1F1
ReplyDeletecanlı sanal show
E65F4
ReplyDeletegörüntülü şov whatsapp numarası
FE9D7
ReplyDeletewhatsapp görüntülü show güvenilir
2624F95A7E
ReplyDeletecialis
geciktirici
yapay kızlık zarı
bayan azdırıcı damla
stag
viagra
green temptation
novagra
ereksiyon hapı
1B294404A4
ReplyDeletestag
geciktirici
cobra vega
ereksiyon hapı
kamagra
vigrande
viga
delay
bufalo içecek
B2934D7FE0
ReplyDeletecialis
skype show
steroid satın al
www.ijuntaxmedikal.store
görüntülü show
steroid satın al
B4A1B0F1B6
ReplyDeletetakipçi
Pokemon GO Promosyon Kodu
Pubg New State Promosyon Kodu
Pokemon GO Promosyon Kodu
Titan War Hediye Kodu
Osm Promosyon Kodu
Viking Rise Hediye Kodu
War Robots Hediye Kodu
Roblox Şarkı Kodları
DE9EDE0D41
ReplyDeleteinstagram takipçi
Para Kazandıran Oyunlar
Danone Sürpriz Kodları
Kazandırio Kodları
Whiteout Survival Hediye Kodu
Osm Promosyon Kodu
Pokemon GO Promosyon Kodu
Hay Day Elmas Kodu
Whiteout Survival Hediye Kodu
BF9A8016A0
ReplyDeleteTelegram Para Kazanma Grupları
En İyi Telegram Para Kazanma Botları
Telegram Para Kazanma
En İyi Telegram Para Kazandıran Botlar
Telegram Mining
BB5D9CC7A1
ReplyDeleteTelegram Güvenilir Mining Botları
Yeni Telegram Kripto Oyunları
En İyi Telegram Farm Botları
Para Yatırmadan Para Kazanma Telegram
Yeni Telegram Coin Kasma Botları